What does it mean to say that $A \xrightarrow{f} B$ \quad \xrightarrow{g} \quad C \xrightarrow{h} \quad commutes$?
\[h \circ f = g \]
In general,

and less precisely,
A diagram *commutes* when following any two paths between two objects in a diagram gives equal arrows.
Category Theory

We start by defining a category:
Category is a collection $A, B, C, ...$ of objects and for each pair of objects A, B a set $\text{Hom}(A, B)$ of arrows.
so that:

For any objects A, B, C there exists an assignment $\text{Hom}(A, B) \times \text{Home}(B, C) \rightarrow \text{Hom}(A, C)$, $f \times g \mapsto g \circ f$. If such exists f and g are said to be composable.
For any objects A, B, C there exists an assignment $\text{Hom}(A, B) \times \text{Hom}(B, C) \to \text{Hom}(A, C)$, $f \times g \mapsto g \circ f$. If such exists f and g are said to be \textit{composable}.

$h \circ (g \circ f) = (h \circ g) \circ f$ for all composable arrows f, g, h.

so that:
so that:

- For any objects A, B, C there exists an assignment $\text{Hom}(A, B) \times \text{Hom}(B, C) \rightarrow \text{Hom}(A, C)$, $f \times g \mapsto g \circ f$. If such exists f and g are said to be \textit{composable}.

- $h \circ (g \circ f) = (h \circ g) \circ f$ for all composable arrows f, g, h.

- For every object A there exists an arrow 1_A so that if $f : A \rightarrow B$, $f \circ 1_A = f$ and if $g : C \rightarrow A$, $1_A \circ g = g$.
Examples:

- SET whose objects are sets and whose arrows are functions
Examples:

- SET whose objects are sets and whose arrows are functions
- C^1 whose only object is \mathbb{R} and whose arrows are continuous functions $f : \mathbb{R} \to \mathbb{R}$.
Notation

An arrow f between objects A and B will be depicted, literally, as a labeled arrow:

$$A \xrightarrow{f} B$$
Extending the metaphor, given an arrow $A \xrightarrow{f} B$ we will often refer to B as the target of f and to A as the source.
Depicting arrows in this way proves to be one of the many nice things about category theory
For example:

The definition of the identity arrow 1_A can be depicted by noting that the diagrams

\[
\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\downarrow^f & & \downarrow^f \\
B & & \\
\end{array}
\]

and

\[
\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\uparrow^g & & \uparrow^g \\
C & & \\
\end{array}
\]

commute for all f and g.
As we shall see, properties of the arrows themselves will help to characterize the relationship between the objects which are the source and target.
For example:

An arrow f is said to be \textit{monic} if whenever $f \circ g = f \circ h$, it must be that $g = h$.
Here, for the first time, we meet duality in a categorical context:
An arrow f is said to be *epi* if whenever $g \circ f = h \circ f$, it must be that $g = h$.
In what sense are monic and epic arrows “dual”?
To say

\[f \circ g = f \circ h \]

Is to say that the diagram

\[\begin{array}{ccc}
C & \xrightarrow{g} & A & \xrightarrow{f} & B \\
\downarrow{h} & & \downarrow & & \\
\end{array} \]

commutes.
To say

\[g \circ f = h \circ f \]

Is to say that the diagram

\[
\begin{array}{c}
C \overset{h}{\leftarrow} B \overset{f}{\leftarrow} A \\
\end{array}
\]

commutes.
The diagrams

\[C \xrightarrow{g} A \xrightarrow{f} B \]

and

\[C \xleftarrow{h} B \xleftarrow{f} A \]

are the same, but with the arrows reversed.
Examples

Any 1–1 function is monic. Any onto function is epic.
A third type of arrow is the *isomorphism*.
Definition

An arrow $f : A \to B$ is an isomorphism if there exists an arrow $g : B \to A$ so that

$f \circ g = 1_B$
$g \circ f = 1_A$.
Example:

A function of sets is an isomorphism if and only if it is bijective.
The elegance of category theory comes at a price: In category theory, isomorphisms are generally as close as we can get to equality.
For example

In SET, the sets consisting of the three blind mice and the three stooges are isomorphic. So, from the perspective of the category theorist, they are the same.