Define the image of an arrow f in an Abelian category.
Answer:
The image of f is the kernel of the cokernel of f.

Question:

What is the dual construction?
The coimage. It is defined to be the cokernel of the kernel of f.
Last Time:

We proved that in \mathbf{AbG}, the finite product of objects is isomorphic to the finite coproduct. That is, a construction and its dual are essentially the same. In general, this is rare. But not in \mathbf{AbG}.
This Time:

We prove that two other dual constructions are isomorphic in AbG:
Theorem

In Ab_G, the image and coimage of an arrow are isomorphic.
We will prove, instead, something more:

Every arrow $f : A \to B$ in AbG can be uniquely factored as the composition of a strong epic arrow p followed by a monic arrow i.
Where i is the image and p the coimage.
Proof

Let

\[\begin{array}{ccc}
K & \xrightarrow{k} & A \\
\downarrow & & \downarrow f \\
0_{AB} & & B
\end{array} \]

be the kernel of \(f \). Note that \(f \circ k = 0_B \). Let

\[\begin{array}{ccc}
K & \xrightarrow{k} & A \\
\downarrow & & \downarrow p \\
0_{KA} & & C
\end{array} \]

be the cokernel of \(k \).
Then,

\[\begin{array}{c}
K \xrightarrow{k} A \xrightarrow{p} C \\
K \xrightarrow{0_{KA}} A \xrightarrow{f} B
\end{array} \]

commutes, which implies that there exists a unique map \(i \) so that
commutes. In other words, that $f = i \circ p$. Since p is a cokernel, it is a strong epic. Thus, we have left to prove only that i is monic.
So, suppose that $x : X \rightarrow C$ is a map so that $i \circ x = 0$. Let

$$
X \xrightarrow{x} C \xrightarrow{r} R \xrightarrow{0_{XC}}
$$

be the cokernel diagram for x.
Then, by assumption,

\[X \xrightarrow{0_{XC}} C \xrightarrow{r} R \]

commutes.
Thus, there exists a unique map q so that

\[
\begin{array}{c}
B \\
\downarrow^i \\
X \xrightarrow{x} C \\
\downarrow^{0_{XC}} \\
0 \rightarrow R
\end{array}
\]

commutes. Now, since both r and p are epic, so is $r \circ p$. Since we are in an Abelian category, there must exist an arrow $h : H \rightarrow A$ so that
is a cokernel diagram.
Now,

\[f \circ h = i \circ p \circ h \]
\[= q \circ r \circ p \circ h \]
\[= q \circ 0_{HR} \]
\[= 0 \]

(1) \hspace{2cm} \text{since } i = q \circ r \quad (2) \hspace{2cm} r \circ p \circ h = 0 \quad (3)

the composition of \quad (4)

In other words we have the commutative diagram

\[
K \xrightarrow{k} A \xrightarrow{f} B
\]

\[
0_{AB}
\]

\[
h
\]

\[
H
\]

which, of course, implies that there exists a unique map \(l \) so that
commutes. Now,

\[p \circ h = p \circ k \circ l \] \hspace{1cm} (5)

\[= 0_{KC} \circ l \] \hspace{1cm} (6)

\[= 0_{HC} \] \hspace{1cm} (7)

In other words,
commutes. This implies that there exists a unique n so that
commutes. In other words, that \(n \circ r \circ p = p = 1_{Ap} \). But remember, that \(p \), being the cokernel of \(k \) is epi.
Thus, $n \circ r = 1_A$, which implies that r is monic. But, r, by definition, is a map so that $r \circ x = 0_X$. Since r is monic, we must have that $x = 0$. At the start of all this, though, we let x be an arbitrary map with the property that $i \circ x = 0$. Since this implies that x must also be 0 we see that i is monic. The uniqueness of this factorization is an immediate consequence of a previous lemma.