Quiz

Define what is meant by an *equalizer*
Last Time:

We proved the “only if” part of the
Lemma

A mono $f : A \rightarrow B$ is strong if and only if for every commutative diagram

$$
\begin{array}{ccc}
T & \xrightarrow{t} & A \\
\downarrow{r} & & \downarrow{f} \\
S & \xrightarrow{s} & B
\end{array}
$$

in which r is an epic arrow, there exists a unique arrow w
so that in the diagram

\[
\begin{array}{ccc}
T & \xrightarrow{t} & A \\
\downarrow{r} & & \downarrow{f} \\
S & \xrightarrow{s} & B \\
& \searrow{w} & \\
\end{array}
\]

\[f \circ w = s \text{ and } w \circ r = t.\]
This time we will

Complete the proof from last time
This time we will

- Complete the proof from last time
- Prove one or two more facts about strong monos
This time we will

- Complete the proof from last time
- Prove one or two more facts about strong monos
- Define \textit{pre} -- \textit{image}.
This

time, we prove the “if” part:
That is,
Suppose that f is a monic arrow so that for every commutative diagram

\[
\begin{array}{ccc}
T & \xrightarrow{t} & A \\
\downarrow{r} & & \downarrow{f} \\
S & \xrightarrow{s} & B
\end{array}
\]

in which r is an epic arrow, there exists a unique map w
so that in the diagram

\[
\begin{array}{c}
T & \overset{t}{\longrightarrow} & A \\
\downarrow{r} & & \downarrow{f} \\
S & \overset{s}{\longrightarrow} & B \\
\end{array}
\]

\[f \circ w = s \text{ and } w \circ r = t\]
Let κ be any arrow and $P \xrightarrow{p} A$ be the pullback of f by κ.

be the pullback of f by κ.

\[
\begin{array}{c}
P \xrightarrow{p} A \\
q \\
K \xrightarrow{k} B \\
f
\end{array}
\]
Suppose that

q is epic. Then, by hypothesis, there exists a unique w so that

\[f \circ w = k \text{ and } w \circ q = p. \]
Then, the diagram commutes.
Thus,

there exists a unique arrow ϕ so that

\[
\begin{array}{ccc}
K & \xrightarrow{w} & K \\
\phi & \downarrow & \phi \\
1_K & \downarrow & 1_K \\
\end{array}
\]

commutes. Since f is monic, so too is q. Since $q \circ \phi = 1_K$, q is an isomorphism.
Lemma

Suppose $f : A \to B$ and that $f = i \circ p$ where i is a strong mono and p is an epi. Suppose too that $f = \bar{i} \circ \bar{p}$. Then, $i = \phi \bar{i}$ and $p = \psi \bar{p}$ where ϕ and ψ are isomorphisms.
Proof

Consider, the following commutative diagram

Since p is a strong epi, and \tilde{i} is monic, there exists an unique arrow u so that in the diagram
$u \circ \tilde{p} = p$ and $i \circ u = \tilde{i}$. Since we have assumed that \tilde{p} is a strong epi, there exists a unique v so that in the diagram
$v \circ p = \tilde{p}$ and $\tilde{i} \circ v = i$.
Now,

\[i \circ u \circ v \circ p = \tilde{i} \circ \tilde{p} \]
Now,

\[i \circ u \circ v \circ p = \tilde{i} \circ \tilde{p} \]

\[= i \circ p \Rightarrow \]
Now,

- $i \circ u \circ v \circ p = \tilde{i} \circ \tilde{p}$
- $= i \circ p \implies$
- $u \circ v \circ p = p$ (since i is monic)
Now,

- $i \circ u \circ v \circ p = \tilde{i} \circ \tilde{p}$
- $= i \circ p \Rightarrow$
- $u \circ v \circ p = p$ (since i is monic)
- $u \circ v = 1_K \circ p$ (which implies)
Now,

\[i \circ u \circ v \circ p = \tilde{i} \circ \tilde{p} \]
\[= i \circ p \Rightarrow \]
\[u \circ v \circ p = p \text{ (since } i \text{ is monic)} \]
\[u \circ v = 1_K \circ p \text{ (which implies)} \]
\[u \circ v = 1_K \text{ (since } p \text{ is epic)} \]
Now,

\[i \circ u \circ v \circ p = \tilde{i} \circ \tilde{p} \]

\[= i \circ p \Rightarrow \]

\[u \circ v \circ p = p \text{(since } i \text{ is monic)} \]

\[u \circ v = 1_K \circ p \text{ (which implies)} \]

\[u \circ v = 1_K \text{(since } p \text{ is epic)} \]
Similarly we can show that $v \circ u = 1_G$.

Thus, both v and u are isomorphisms. In particular, i and p are isomorphic to \tilde{i} and \tilde{p} respectively.
Lemma

Let $f : X \to Y$ be a function of sets and $A \subseteq Y$. If $a : A \to Y$ is the inclusion function, that is the function which takes each element of A to itself, then the pullback of f and a is the pre-image of A by f, $f^{-1}(A)$.
Proof

Let’s set up the diagram first:

\[
\begin{array}{ccc}
 f^{-1} & i & \rightarrow & X \\
 \bar{f} & \downarrow & & \downarrow f \\
 A & a & \rightarrow & Y \\
\end{array}
\]

Here, \(i \) is the inclusion function, and \(\bar{f} \) is the restriction of \(f \) to \(f^{-1}(A) \).
Now, let Z be a set and g and h functions so that

\[
\begin{array}{ccc}
Z & \xrightarrow{g} & X \\
\downarrow{h} & & \downarrow{f} \\
A & \xrightarrow{a} & Y \\
\end{array}
\]

commutes. That is, for every $x \in H$, $f(g(x)) = a(h(x))$.
This allows us to say then that the diagram
\[
\begin{array}{c}
\text{This}
\end{array}
\]

allows us to say then that the diagram

\[
\begin{array}{ccccccccc}
Z & \xrightarrow{g} & X \\
\downarrow{\phi} & & \downarrow{f} \\
A & \xrightarrow{\phi^{-1}} & X
\end{array}
\]

commutes, where \(\phi(x) := g(x) \).
This definition makes sense because \(f(g(x)) = h(x) \), and \(\bar{f}\phi(x) = f(g(x)) \). If \(\psi \) were another map which made commute, then it would also follow that \(i\phi = i\psi \) which implies that \(\phi = \psi \) since \(i \) is one to one.
Definition

In any category with pullbacks, if \(\iota H \to G \) is monic and \(f : K \to G \) is an arrow, we will denote the pullback of \(f \) by \(\iota
\)

\[f^{-1}(H) \]

and refer to it as \textit{pre-image} of \(H \) by \(f \).
For next time:

Read the section on equalizers